${\sf Reference} \qquad \qquad = \quad {\sf ABLIKIM \ 15S; \ PRL \ 115 \ 011803}$

Verifier code = BES3

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else.

PLEASE READ NOW

PLEASE REPLY WITHIN ONE WEEK

Xiao-Rui Lyu

EMAIL: xiaorui@ucas.ac.cn

July 21, 2016

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Simon Eidelman BINP, Budker Inst. of Nuclear Physics Prospekt Lavrent'eva 11 RU-630090 Novosibirsk Russian Federation

EMAIL: simon.eidelman@cern.ch

NODE=MXXX025

 ψ (3823) was X(3823)

$$J^{PC} = 2^{--}$$

J, P need confirmation.

Seen by BHARDWAJ 13 in $B \rightarrow \chi_{c1} \gamma \, K$ and ABLIKIM 15S in $e^+e^- \rightarrow \pi^+\pi^-\gamma\chi_{c1}$ decays as a narrow peak in the invariant mass distribution of the $\chi_{c1}\gamma$ system. Properties consistent with the $\psi_2(1^3D_2)$ $c\overline{c}$ state.

NODE=M212

NODE=M212

ψ (3823) MASS

VALUE (MeV) DOCUMENT ID TECN COMMENT 3822.2 ± 1.2 OUR AVERAGE

NODE=M212M

NODE=M212M

YOUR DATA

¹ ABLIKIM 15S BES3 $e^+e^- \to \pi^+\pi^-\chi_{c1}\gamma$ $3821.7\!\pm\!1.3\!\pm\!0.7$ 19 ± 5 2 BHARDWAJ 13 BELL $B
ightarrow \chi_{c1} \gamma K$ $3823.1\!\pm\!1.8\!\pm\!0.7$ $33\,\pm\,10$

 1 From a simultaneous unbinned maximum likelihood fit of $e^+e^ightarrow~\pi^+\pi^-\chi_{c1}\gamma$ data YOUR NOTE (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S)\to\chi_{c1}\gamma$ and $\psi(3823)\to\chi_{c1}\gamma$ together, with floating mass scale offset for $\psi(2S)$, floating $\psi(3823)$ mass, and zero $\psi(3823)$ width,

resulting in a significance of 5.9σ when including systematic uncertainties. ² From a simultaneous fit to $B^{\pm} \rightarrow (\chi_{c1}\gamma)K^{\pm}$ and $B^{0} \rightarrow (\chi_{c1}\gamma)K^{0}_{S}$ with significance 4.0σ including systematics. Corrected for the measured $\psi(2S)$ mass using $B \rightarrow (\chi_{c1}\gamma)K^{0}_{S}$ $\psi(2S)K \rightarrow (\gamma \chi_{c1})K$ decays.

NODE=M212M;LINKAGE=B

NODE=M212M;LINKAGE=A

ψ (3823) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT $^{1}\,\mathrm{ABLIKIM}$ 15S BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$ YOUR DATA 90

• • • We do not use the following data for averages, fits, limits, etc. • •

 2 BHARDWAJ 13 BELL $B
ightarrow \chi_{c1} \gamma K$

 1 From a fit of e $^+$ e $^ \to$ $\pi^+\pi^ \chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to a Breit-Wigner function with the mass fixed YOUR NOTE

from the likelihood fit above, Gaussian resolution smearing, and floating width. ² From a simultaneous fit to $B^\pm \to (\chi_{c1} \gamma) K^\pm$ and $B^0 \to (\chi_{c1} \gamma) K^0_S$ with significance

NODE=M212W NODE=M212W

NODE=M212225

NODE=M212R02 NODE=M212R02

NODE=M212R03 NODE=M212R03

NODE=M212W:LINKAGE=B

NODE=M212W;LINKAGE=A

ψ (3823) BRANCHING RATIOS

 $\Gamma(\chi_{c2}\gamma)/\Gamma_{\text{total}}$

¹ ABLIKIM YOUR DATA not seen

15S BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c2}\gamma$ ² BHARDWAJ 13 BELL $B^+ \rightarrow \chi_{c2} \gamma K^+$

YOUR NOTE

 1 From a simultaneous unbinned maximum likelihood fit of $e^+e^-
ightarrow \ \pi^+\pi^-\chi_{c2}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c2} \gamma$ and $\psi(3823) \to \chi_{c2} \gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi(3823)$ mass floating (fixed to that above), and

² Reported B($B^{\pm} \to \psi(3823) K^{\pm}$) × B($\psi(3823) \to \gamma \chi_{C2}$) < 3.6 × 10⁻⁶ at 90% CL.

NODE=M212R02;LINKAGE=B

NODE=M212R02;LINKAGE=A

 $\Gamma(\chi_{c2}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ_2/Γ_1 DOCUMENT ID BHARDWAJ 13 BELL $B^+ o \chi_{c1/c2} \gamma K^+$ 90

• • • We do not use the following data for averages, fits, limits, etc. • • ¹ ABLIKIM

15S BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$ 1 From a simultaneous unbinned maximum likelihood fit of e $^{+}\,e^{-}\rightarrow~\pi^{+}\,\pi^{-}\,\chi_{c1(2)}\gamma$ YOUR NOTE

data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c1(2)} \gamma$ and $\psi(3823) \to \chi_{c1(2)} \gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi(3823)$ mass floating (fixed to that above), and zero $\psi(3823)$ width.

NODE=M212R03;LINKAGE=A

YOUR DATA

ψ (3823) REFERENCES

YOUR PAPER

ABLIKIM 15S PRL 115 011803 BHARDWAJ 13 PRL 111 032001 M. Ablikim *et al.* V. Bhardwaj *et al.* (BES III Collab.) (BELLE Collab.)

(BES III Collab.)

(BABAR Collab.)

(BABAR Collab.)

(BELLE Collab.)

REFID=56784 REFID=55412 NODE=M181

NODE=M212

X(4360)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Seen in radiative return from e^+e^- collisions at $\sqrt{s}=9.54$ –10.58 GeV by AUBERT 07S, WANG 07D, and LEES 14F. See also the review under the X(3872) particle listings. (See the index for the page number.)

NODE=M181

X(4360) BRANCHING RATIOS

 $\Gamma(\psi(3823)\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

Γ₃/Γ <u>DOCUMENT ID TECN</u> <u>COMMENT</u> NODE=M181225 NODE=M181R03 NODE=M181R03

YOUR DATA

possibly seen 19 1 ABLIKIM

15s BES3 $e^+e^-_{\pi^+\pi^-\chi_{c1}\gamma}$

YOUR NOTE

 1 From a fit of $e^{+}\,e^{-}\to\pi^{+}\pi^{-}\,\psi(3823),\,\psi(3823)\to\chi_{c1}\,\gamma$ cross sections taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to the X(4360) line shape.

NODE=M181R03;LINKAGE=A

X(4360) REFERENCES

YOUR PAPER

ABLIKIM 15S PRL 115 011803 LEES 14F PR D89 111103 AUBERT 07S PRL 98 212001 M. Ablikim et al.
J.P. Lees et al.
B. Aubert et al.
X.L. Wang et al.

REFID=56784 REFID=55938 REFID=51724 REFID=51959 NODE=M073

NODE=M181

 ψ (4415)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ (4415) BRANCHING RATIOS

 $\Gamma(\psi(3823)\pi^+\pi^-)/\Gamma_{\text{total}}$

Γ₁₇/Γ

YOUR DATA

possibly seen 19

15S

PRL 115 011803

 $20 \frac{\textit{DOCUMENT ID}}{\textit{ABLIKIM}} \qquad 15s \quad \frac{\textit{TECN}}{\textit{BES3}} \quad \frac{\textit{COMMENT}}{\textit{e}^{+}\,\textit{e}^{-} \rightarrow \ \pi^{+}\pi^{-}\chi_{\textit{c}1}\gamma_{\textit{c}1}}$

NODE=M073R13 NODE=M073R13

NODE=M073225

YOUR NOTE

YOUR PAPER ABLIKIM

²⁰ From a fit of e⁺ e⁻ $\to \pi^+\pi^- \psi$ (3823), ψ (3823) $\to \chi_{c1} \gamma$ cross sections taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to the ψ (4415) line shape.

NODE=M073R13;LINKAGE=A

ψ (4415) REFERENCES

` '

M. Ablikim et al. (BES III Collab.)

NODE=M073 REFID=56784